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We study a model short-range attractive fluid under shear. For this system, the strength of interparticle
attractions strongly influences the equilibrium structural order. We find that shear monotonically decreases
structural order regardless of the strength of the attractions. There is a strong correlation between shear-rate-
dependent viscosity and a structural order metric, suggesting a structurally based constitutive equation. This
correlation also holds for the Lennard-Jones fluid.
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Shearing a fluid impacts both its transport coefficients and
its stationary interparticle correlations. However, are shear-
induced changes to dynamics and structure linked in a simple
way? In the case of equilibrium fluids, the search for
structure-property relations using molecular simulations and
experiments has proved fruitful. For example, motivated in
part by earlier studies of �1,2�, researchers have found that
the effects of isochoric cooling or confinement on the self-
diffusion coefficient D of a number of dense model fluids
can be approximately described by empirical relations of the
form ln�DT−1/2��sex, where T is the temperature and sex is
the molar excess entropy �1–13�. The excess entropy is a
negative quantity that characterizes the number of states ren-
dered inaccessible to an equilibrium fluid �relative to an ideal
gas� due to the presence of interparticle correlations. Thus,
−sex can be viewed as a structural order metric �14�.

The link to traditional structural measures follows when
sex is expressed as a sum over integral contributions from
two-, three-, …, and higher-body correlation functions �15�.
Several studies �see, e.g., �3,5,6,10�� have shown that the
two-body contribution to the excess entropy s2, which de-
pends solely on the number density � and the pair-correlation
function �PCF� g�r�, also correlates with the transport prop-
erties of dense equilibrium fluids over a range of conditions;
i.e., ln�DT−1/2��s2 and ln��0T−1/2��−s2, where �0 is the
zero-shear viscosity of the fluid. To date, however, with the
exception of exact virial-like relations between shear-
distorted structure and viscosity �see, e.g., �16,17��, the
search for similar relationships between dynamical and struc-
tural properties of driven or out-of-equilibrium fluid systems
has received comparatively little attention �18–23�. Here, we
investigate via molecular dynamics simulations the relation-
ship between shear-rate-dependent structural order, as quan-
tified by −s2, and shear viscosity.

The system we focus on is a model colloidal fluid with
short-ranged attractive �SRA� interactions. In this context,
“short-ranged” means a few percent of a particle diameter.
SRA fluids show nontrivial structural and dynamic proper-
ties, even in the absence of shear. Whereas the mobility of a
simple atomic fluid generally decreases when it is cooled, the
mobility of a dense SRA fluid displays a maximum as a

function of T−1 �or strength of the attractive interparticle in-
teraction�. Consistent with this unusual behavior, dense SRA
fluids can vitrify not only upon cooling, forming an “attrac-
tive” glass or gel, but also upon heating, forming a “repul-
sive” or hard-sphere glass �24–30�. The precursor super-
cooled fluids near these two different glass transitions have
different types of local structural order �10,31�. In fact,
whereas −s2 of a simple atomic fluid monotonically increases
upon cooling, the structural order of an SRA fluid displays a
minimum as a function of T−1 or strength of the interparticle
attractions �10,31�. Qualitatively, this minimum corresponds
to the intermediate states between two limits: weak interpar-
ticle attractions, where the fluid exhibits hard-sphere-like
“packing order,” and strong interparticle attractions, where
the fluid displays gel-like “bonding order.” Here, we exam-
ine how shear impacts SRA fluids with different interparticle
attractions and, thus, different equilibrium structures and vis-
cosities. In particular, we investigate whether shear-induced
changes to structure for these various fluids relate in a simple
way to the corresponding changes in shear viscosity.

The model SRA fluid we consider qualitatively describes
a solution of colloidal particles attracted to one another by
depletion interactions due to the presence of �implicit� non-
adsorbing polymers. The details of the colloidal pair poten-
tial are provided in �32,33�, but we discuss the main at-
tributes below. The colloids are spherical and their effective
interactions consist of three parts U�r�=UHS�r�+UAO�r�
+UR�r�. �i� A strongly repulsive contribution UHS�r�
=kBT�2a12 /r�36, where 2a12 is the colloid diameter and kB is
Boltzmann’s constant. �ii� An Asakura-Oosawa potential
UAO�r�, which accounts for polymer-induced depletion at-
tractions �34,35�. The strength of this attraction is approxi-
mately proportional to the volume fraction of polymers in
solution �p, while the range is controlled by the radius of
gyration of the polymers, set at a /5. �iii� A long-range, soft
repulsion UR which prevents fluid-fluid phase separation
�32�. The particle radii are weakly polydisperse �drawn from
a uniform distribution with mean a and half-width a /10� to
prevent crystallization. We neglect any effects that shear
might have on the effective interparticle pair potential. To
simplify notation, quantities reported for this model are im-
plicitly nondimensionalized by appropriate combinations of
the characteristic length scale, the particle radius a, and the
characteristic time scale a�m /kBT, where m is particle mass.*Corresponding author. truskett@che.utexas.edu
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We perform both equilibrium molecular dynamics �EMD�
and nonequilibrium molecular dynamics �NEMD� simula-
tions. Details of the EMD simulations are the same as those
reported in �36�. Zero-shear viscosity �0 is calculated from
the EMD simulations using the Einstein form �37� of the
generalized Green-Kubo relationship �38�. Several indepen-
dent simulations were run at each state point to estimate the
error associated with �0.

To study this system under shear, the Newtonian equa-
tions of motion are replaced by the so-called SLLOD equa-
tions of motion �39� supplemented by Lees-Edwards bound-
ary conditions �for details, see �40��. We employ a cubic
simulation cell with N=1000 particles and time step �t
=0.001. The applied velocity field is in the x direction, and
the gradient �̇ is in the z direction ��̇=dvx /dz�. Constant T is
ensured by using the isokinetic thermostat �41�. We study the
shear-rate-dependent viscosity ���̇��−Pxz��̇� / �̇, where Pxz
is the xz component of the pressure tensor. All simulations of
the SRA fluid are carried out at a colloid volume fraction
�c=4��i

Nai
3 /3V of 0.4 and polymer concentrations �p in the

range 0.0–0.4. We vary shear rate �̇ between 0.001 and 0.5.
All simulations were run with kBT=1.

For each system, we calculate the two-body structural or-
der parameter −s2, defined as

− s2 �
�

2
� dr	g�r�ln g�r� − �g�r� − 1�
 . �1�

For the NEMD simulations, the radial and angular depen-
dences of the particle-averaged PCF �i.e., g�r�=g�r ,� ,���
are considered. We also investigated the cumulative order
integral Is2

�10�:

Is2
�r� �

�

2
�

0

r

dr��
0

2�

d��
0

�

d�r�2

	sin���	g�r�,�,��ln g�r�,�,��

− �g�r�,�,�� − 1�
 . �2�

As defined, Is2
�r�→−s2 as r→
. Is2

�r� quantifies how inter-
particle correlations on length scales less than r impact the
structural order.

Figure 1 displays the shear-rate-dependent viscosity ���̇�
for fluids with different polymer concentration, �p. Consis-
tent with earlier simulations of this system �42,43�, the zero-
shear viscosity �0 has a nonmonotonic dependence on �p
�see inset to Fig. 1�. Interestingly, this nonmonotonic depen-
dence occurs for all shear rates examined in this work; i.e.,
shear does not remove the anomalous effect that �p has on
the shear viscosity. For all values of �p except the highest
studied here ��p=0.4�, the fluid displays a Newtonian regime
at low shear. For higher shear rates, the fluid shear thins. As
might be expected, the degree of shear thinning increases
with �0. As noted elsewhere �23�, this rheological behavior is
largely consistent with simulations of other glass formers
�44� and experimental data of SRA colloidal suspensions
�45�.

How does shear effect structural order? Figure 2�a� dis-
plays −s2 as a function of shear rate for the values of �p
studied. Similar to �, there is a clear nonmonotonic depen-

dence of −s2 on �p for all shear rates; i.e., the nontrivial
effect of interparticle attractions on the structural order of the
fluid is not erased by shear flow. Moreover, and also consis-
tent with the behavior of �, the application of shear has the
effect of reducing the degree of structural order in the fluid,
and the amount of shear induced disordering increases with
the value of −s2 in the equilibrium fluid.

To explore the origins of these trends, Is2
�r� and, for ref-
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FIG. 1. �Color online� Shear viscosity versus shear rate for the
model colloid-polymer system at several polymer volume fractions
�p. Lines are guides to the eye. Inset shows zero-shear viscosity �0

versus polymer concentration �p.
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FIG. 2. �Color online� �a� Structural order metric −s2 of the
colloid-polymer model versus shear rate for several polymer vol-
ume fractions �p. Symbols are the same as in Fig. 1. �Lower panel�
Orientationally averaged PCF ḡ�r� and cumulative order integral
Is2

�r� for several shear rates and two polymer concentrations: �b�,
�c� �p=0.0 and �d�, �e� �p=0.4. Is2

�r� is calculated from the total
PCF g�r�, not ḡ�r�. In lower panels, arrows indicate increasing
shear rate; numbers in legends indicate value of shear rate; vertical
dashed line is at r=3a and vertical dotted line is at r=5a, the
approximate locations of the first and second minima in ḡ�r�,
respectively.
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erence, the orientationally averaged PCF ḡ�r� are shown as a
function of shear rate for two cases: �a� �p=0.0 �no attrac-
tions, Figs. 2�b� and 2�c�� and �b� �p=0.4 �strong attractions,
Figs. 2�d� and 2�e��. These plots provide insights into the
specific changes in coordination shell structure that explain
the shear induced disordering in these two limits.

As might be expected, in the absence of interparticle at-
tractions ��p=0�, the model suspension has a structure simi-
lar to that of a dense, equilibrium hard-sphere fluid. In other
words, first, second, and third coordination shells are well
defined �see Fig. 2�b�� and make significant contributions to
the overall structural order �Fig. 2�c��. Qualitatively, the ef-
fect of shear on the PCF is to weaken those correlations
�make the peaks less pronounced�, although the changes to
ḡ�r� are rather minor. Nonetheless, Fig. 2�c� illustrates that
even small changes have a significant impact on the integral
structural order, mostly by breaking up the hard-sphere
“packing order” of the second and third coordination shells.

As can be seen in Fig. 2�d�, strong interparticle attractions
��p=0.4� give rise to short-range physical bonds between the
particles �10,30,31,36,46,47�. There is a pronounced first
peak in the PCF and weaker second and third peaks as com-
pared to the �p=0 case; i.e., most of the structural order in
the equilibrium fluid is due to correlations of particles with
their nearest neighbors �see Fig. 2�e��. Focusing on ḡ�r�, the
effect of applying shear is to reduce the height of the first
peak �i.e., breaking the physical bonds�, but again the mag-
nitude of the shear-induced changes to the PCF appears
rather small. Nonetheless, the behavior of Is2

�r� shows that
the shear-induced disordering of the first coordination shell
indeed has a significant impact on the structural order of the
fluid.

The data in Figs. 1 and 2�a� suggest that the effects of
shear on viscosity and structural order are similar. Figure 3
displays the shear viscosity as a parametric function of −s2.
For a given �p and �c, the data appear to follow a relation-
ship of the form

ln����̇�� � − s2��̇� . �3�

The lines in Fig. 3 show the fits of the nonequilibrium data to
Eq. �3�. This relationship can be viewed as a structurally

based constitutive equation. Recall that, by our choice of
nondimensionalization, the viscosity is implicitly scaled by
T−1/2. Equation �3� is therefore qualitatively similar to the
structure-property relation obeyed for the equilibrium fluid.

There are two simple potential uses for for such a rela-
tionship. Like other constitutive equations, Eq. �3� provides a
means for estimating the zero-shear viscosity by extrapola-
tion to s2 at �̇=0 �i.e., substituting the value of s2 at zero
shear into Eq. �3��. Figure 3 demonstrates that there is gen-
erally good agreement between the zero-shear viscosities cal-
culated by EMD simulations and those obtained via the
aforementioned extrapolation. Moreover, Eq. �3�, in conjunc-
tion with theories for structure under shear �see, e.g.,
�18–21,48��, provides a means to explore theoretically the
rheology of fluids.

As a first test of the generality of the above structurally
based constitutive equation, we also consider the monodis-
perse Lennard-Jones �LJ� fluid. Simulation details are the
same as those presented above. For this model, quantities are
reported in the standard LJ reduced form �40�. We investi-
gate T=0.5,0.75,1.0,1.25, �c=�� /6 of 0.4 and 0.45, and
shear rates in the range �̇=0.005–1.0. Under these condi-
tions, both � and −s2 are monotonically decreasing functions
of shear rate. Figure 4 displays ���̇� for the LJ fluid as a
parametric function of −s2��̇�. For convenience, we have
scaled the viscosity by �−2/3T−1/2, as originally suggested by
�1,2�. This scaling places the zero-shear viscosity of the
dense LJ fluid onto a single curve. Again, we find that the
shear-rate-dependent data is well described by Eq. �3�. Also,
as displayed in the inset to Fig. 4, there is good agreement
between viscosities calculated from EMD simulations and
those obtained from the structural extrapolation. These re-
sults, together with those for the SRA fluid, suggest that the
structurally based constituative equation may hold for a va-
riety of fluids, although more studies to verify this are war-
ranted.

T.M.T., V.G., and W.P.K. acknowledge support of the Na-
tional Science Foundation �Grants No. CTS-028772 �T.M.T.�
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FIG. 3. �Color online� Main panel: shear viscosity versus order
parameter −s2 for the model colloid-polymer system. Arrow indi-
cates increasing shear rate. Large solid symbols represent the data at
zero shear. Symbols are the same as in Fig. 1. Lines are fits of the
nonequilibrium data to Eq. �3�. Inset: zero-shear viscosity obtained
by equilibrium simulations versus that obtained from extrapolation
based on −s2 �see text�.
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FIG. 4. �Color online� Main panel: shear viscosity versus order
parameter −s2 of the Lennard-Jones fluid at several values of tem-
perature T and packing fraction �c. Large solid circles represent the
data at zero shear. Solid lines are fits of the nonequilibrium data to
Eq. �3�. Inset: zero-shear viscosity obtained by equilibrium simula-
tions versus those obtained from extrapolation based on −s2 �see
text�.
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